Beyond GLMs: a generative mixture modeling approach to neural system identification

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification

Generalized linear models (GLMs) represent a popular choice for the probabilistic characterization of neural spike responses. While GLMs are attractive for their computational tractability, they also impose strong assumptions and thus only allow for a limited range of stimulus-response relationships to be discovered. Alternative approaches exist that make only very weak assumptions but scale po...

متن کامل

A possibilistic clustering approach toward generative mixture models

Generative mixture models (MMs) provide one of the most popular methodologies for unsupervised data clustering. MMs are formulated on the basis of the assumption that each observation derives from (belongs to) a single cluster. However, in many applications, data may intuitively belong to multiple classes, thus rendering the single-cluster assignment assumptions of MMs irrelevant. Furthermore, ...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

A Generative Modeling Approach to Limited Channel ECG Classification

Processing temporal sequences is central to a variety of applications in health care, and in particular multichannel Electrocardiogram (ECG) is a highly prevalent diagnostic modality that relies on robust sequence modeling. While Recurrent Neural Networks (RNNs) have led to significant advances in automated diagnosis with time-series data, they perform poorly when models are trained using a lim...

متن کامل

Modeling Annotators: A Generative Approach to Learning from Annotator Rationales

A human annotator can provide hints to a machine learner by highlighting contextual “rationales” for each of his or her annotations (Zaidan et al., 2007). How can one exploit this side information to better learn the desired parameters θ? We present a generative model of how a given annotator, knowing the true θ, stochastically chooses rationales. Thus, observing the rationales helps us infer t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Computational Neuroscience

سال: 2012

ISSN: 1662-5188

DOI: 10.3389/conf.fncom.2012.55.00080